Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Spring semester, 2017-2018 academic year

Academic course information

Discipline's	Discipline's	Type	No. of hours per week			Number of	ECTS	
code	title		Lect.	F	Pract.	Lab.	credits	
YaVPZM	Pysical	Elective	2		1	0	3	5
7301	theory of							
	nuclear							
	reactor and							
	installations							
Lecturer	Takibayev N.	Takibayev N.Zh., d.s.pm., academic			Office hours		Scheduled	
	of NAS RK, p	of NAS RK, professor						
e-mail	E-mail: takiba	E-mail: takibayev@gmail.com						
Telephone	Telephone: 29	Telephone: 2925-133; 8-777-704-0396		96	Auditory		319	
number								

Academic	Type of course (theoretical, practical; basic, elective) and its purpose (role and		
presentation of	place of the course in the educational program): Pysical theory of nuclear reactor		
the course	and installations.		
	The aim of the course: to familiarize the pre-laboratory with nuclear		
	installations, the theory of nuclear reactors and the use of the acquired skills in		
	experimental work.*		
	A) be able to – demonstrate acquired knowledge (specifically) and it's		
	understanding; - demonstrate an understanding of the overall structure of the		
	study field and the relations between its elements (specifically);		
	B) functional: be able to – include new knowledge in the context of basic		
	knowledge, interpret its contents; - analyze educational situation and offer		
	direction to solve it; - use methods (research, calculation, analysis, etc.) inherent		
	to the field of study (specifically) individually or in a group teaching and		
	research activities;		
	C) be able to - synthesize, interpret and evaluate the learning outcomes of discipline, modules, midterm exam content (specifically);		
	D) be able to – constructive educational and social interaction and cooperation in		
	the group; - propose to consider a problem, to reason its importance; - accept		
	criticism and to criticize; - work in a team;		
	E) be able to – recognize the role of taken course in the implementation of		
	individual learning paths. *The system of descriptor verbs must be used during		
	the formation of competences (Look in Application 2) **Active and interactive		
	methods is recommended to ensure deeper understanding and learning of		
	educational material and to achieve learning out comes of the course (individual		
	researches, group projects, case studies and there methods).		
Prerequisites	Organization and planning of research		
Post requisites	It is necessary in a future professional practice		
Information	Literature (with an indication of the authors and data output), the availability		
resources	(number), software and consumables with information about where you can get		

them.	18-	. Q)
uiciii.	TO-	・フィ

Recommended:

- 1. A. Lyubimov., D.Kish. Введение в экспериментальную физику частиц. 2nd edition. 2001.
- "DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory".
 2008
- 3. Enrico, Fermi and Leo, Szilard U.S. "Neutronic Reactor" issued . 1955
- 4. Wilson, P.D., The Nuclear Fuel Cycle, OUP (1996)
- 5. Foster, Arthur R. and Wright, Robert L. Jr., Basic Nuclear Engineering, 3rd Edition, Allyn and Bacon, Inc., 1977.
- 6. Jacobs, A.M., Kline, D.E., and Remick, F.J., Basic Principles of Nuclear Science and Reactors, Van Nostrand Company, Inc., 1960.

Additional:

- 1. Technical and Economic Aspects of Load Following with Nuclear Power Plants, OECD Nuclear Energy Agency (June 2011)
- Golubev, V. I.; Dolgov, V. V.; Dulin, V. A.; Zvonarev, A. V.; Smetanin, É. Y.; Kochetkov, L. A.; Korobeinikov, V. V.; Liforov, V. G.; Manturov, G. N.; Matveenko, I. P.; Tsibulya, A. M. (1993). "Fast-reactor actinoid transmutation"
- 3. Alex P. Meshik, The Workings of an Ancient Nuclear Reactor, Scientific American (26 January 2009; originally published in the October 2005 edition of Scientific American)
- 4. Knief, Ronald Allen, Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power, McGraw-Hill, 1981.
- 5. Lamarsh, John R., Introduction to Nuclear Engineering, Addison-Wesley Company, 1977

Academic policy of the course in the context of university moral and ethical values

Academic Behavior Rules:

Compulsory attendance in the classroom, the impermissibility of late attendance. Without advance notice of absence and undue tardiness to the teacher is estimated at 0 points.

Academic values:

Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge control, and disrespectful attitude towards teachers. (The code of KazNU Student's honor)

Evaluation and attestation policy

Criteria-based evaluation:

Assessment of learning outcomes in correlation withdescriptors (verification of competence formation during midterm control and examinations).

Summative evaluation:

evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students, (project / case study / program $/ \dots$)

The formula for calculating the final grade.

Final grade for the discipline =
$$\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$$

Below are the minimum estimates in percentage terms:

5% - 100%: A	90% - 94%: A-	
85% - 89%: B+	80% - 84%: B	75% - 79%: B-
70% - 74%: C+	65% - 69%: C	60% - 64%: C-
55% - 59%: D+	50% - 54%: D-	0% -49%: F

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, Independent work of	Number	Maximum
ks	students)	of hours	score
	Module 1		
1	Lecture-1 (L-1). Physics of Elementary particles	2	-
	Seminar -1 (S-1). List of particles and characteristics	1	5
2	L-2. Discovering of Nucleon (proton and neuteron)	2	-
	S-2. Properties of Nucleon	1	5
3	L-3. Introduction to Nuclear Reactor.	2	-
	S-3. Classification of reactors	1	5
	DSWT 1. Prepare the report: Classification of reactors	1	20
4	L-4. Mechanism of nuclear power reactors	2	-
	S-4. Fission and heat generation	1	5
	Module 2		
5	L-5. Mechanism of reactors: Cooling and reactivity control.	2	-
	S-5.Electrical power generation	1	5
	DSWT 2. Prepare the report: Mechanism of nuclear power	1	20
	reactors.		
6	L6. Classification by type of nuclear reaction	2	-
	S6. Nuclear fission and fusion	1	5
7	L7. Current technologies	2	-
	S7. Future and developing technologies	1	5
	DSWT 3. Prepare the report: How to work with reactors:	1	25
	emergency, security. mechanism		
	1stIntermediate Control (IC1)		100
8	Midterm (MT)		100
8	L-8. Nuclear fuel cycle	2	-
	S-8. Natural nuclear reactors	1	5
	Module 3		
9	L-9. Energy and mechanisms of nuclear fission.	2	-
	S-9. Nuclear reactions, thermonuclear bomb.	1	5
	DSWT 4. Prepare the report: Nuclear reactions, Nuclear	1	10
	bomb.		
10	L-10. The power rating of a nuclear power reactor	2	-
	S-10. Fuelling a nuclear power reactor	1	5
11	L-11. Physics of high energy matter	2	-
	S-11. Theoretical imagination of structure of nuclear	1	5
	interactions		
	DSWT 5. Nuclear interaction: how is it going?	1	10
12	L-12. The main installations of material world: accelerator	2	-
	S-12 Mechanism of accelerator	1	5
13	L-13. Needed advances In Accelerators science.	2	-
	S-13. Technology and related apparatus	1	5

	DSWT 6. Prepare the report: How to develop and future of	1	20
	nuclear installations.		
14	L-14. Particle beams physics.	2	-
	S-14. Nuclear reactions in particles physics.	1	5
15	L-15. Databases on nuclear reactions.	2	-
	S-15. Databases on nuclear reactions.	1	5
	DSWT 7. Prepare the report: Other types of nuclear reactors	1	25
	and installations.		
	2 nd Intermediate Control (IC2)		100
	Exam		100
	Total		100

Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission)

Lecturer	TakibayevN.Zh.
Head of the Department	Abishev M.E.
Chairman of the Faculty Methodical Bureau	A.T.Gabdullina A.T.